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Vowel perception is influenced by precursor sounds that are resynthesized to shift frequency

regions [Ladefoged and Broadbent (1957). J. Acoust. Soc. Am. 29(1), 98–104] or filtered to empha-

size narrow [Kiefte and Kluender (2008). J. Acoust. Soc. Am. 123(1), 366–376] or broad frequency

regions [Watkins (1991). J. Acoust. Soc. Am. 90(6), 2942–2955]. Spectral differences between fil-

tered precursors and vowel targets are perceptually enhanced, producing spectral contrast effects

(e.g., emphasizing spectral properties of /I/ in the precursor elicited more /E/ responses to an /I/-/E/

vowel continuum, and vice versa). Historically, precursors have been processed by high-gain filters,

resulting in prominent stable long-term spectral properties. Perceptual sensitivity to subtler but

equally reliable spectral properties is unknown. Here, precursor sentences were processed by filters

of variable bandwidths and different gains, then followed by vowel sounds varying from /I/-/E/.

Contrast effects were widely observed, including when filters had only 100-Hz bandwidth or þ5 dB

gain. Average filter power was a good predictor of the magnitudes of contrast effects, revealing a

close linear correspondence between the prominence of a reliable spectral property and the size of

shifts in perceptual responses. High sensitivity to subtle spectral regularities suggests contrast

effects are not limited to high-power filters, and thus may be more pervasive in speech perception

than previously thought. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4921600]

[MSS] Pages: 3466–3476

I. INTRODUCTION

According to the efficient coding hypothesis (Barlow,

1961), sensory systems adapt and evolve to capture reliable

aspects of the sensory environment. Identifying and extract-

ing reliable aspects of the environment allows sensory sys-

tems to be optimally sensitive to changing input that may be

behaviorally relevant. Neural adaptation is an elegant exam-

ple of this phenomenon. When sensory inputs are constant or

predictable, neural responses generally diminish or cease al-

together, as no new information is being presented to the or-

ganism. When sensory inputs change, neural firing increases,

indicating new information in the environment. Extracting

predictability in order to be optimally sensitive to unpredict-

ability is a core principle by which sensory systems operate.

Auditory perception extracts and exploits acoustic prop-

erties that are predictable or reliable across time. This is par-

ticularly true for reliable aspects of the long-term average

spectrum, such as spectral peaks and overall shape (e.g.,

Ladefoged and Broadbent, 1957; Watkins, 1991; Watkins

and Makin, 1994, 1996a,b; Holt, 2005, 2006; Kiefte and

Kluender, 2008; Alexander and Kluender, 2010; Stilp et al.,
2010; Sjerps et al., 2011; Stilp and Anderson, 2014). When

this spectral property changes or is no longer reliable in a

subsequent sound (typically the target sound to be identi-

fied), perception magnifies this difference. Perception of the

target sound is biased away from the preceding spectral reg-

ularity, resulting in spectral contrast effects.1 For example, a

precursor sound with a lower-frequency emphasis will make

a neutral-frequency target stimulus sound higher-frequency

by comparison, and vice versa.

Spectral contrast effects in speech perception date back

at least to Ladefoged and Broadbent (1957), who examined

vowel perception as a function of talker characteristics. They

created multiple renditions of the sentence “Please say what

this word is” by shifting frequency ranges up or down, simu-

lating higher or lower formant frequencies as would be pro-

duced by different talkers. Ladefoged and Broadbent

reported substantial changes in vowel perception: sentences

with lower first formant (F1) frequencies elicited more /E/

percepts (higher F1), while sentences with higher F1 fre-

quencies elicited more /I/ percepts (lower F1). These results

have been replicated in unprocessed natural speech

(Ladefoged, 1989), across changes in talker, spatial position,

and long intervening silences (Broadbent and Ladefoged,

1960), for higher formant frequencies (F2: Huang and Holt,

2012; F3: Laing et al., 2012), for fundamental frequency

(Johnson, 1990; Huang and Holt, 2009), and in spectrally

sparse sinewave speech (Remez et al., 1987).

In a series of reports, Watkins and colleagues demon-

strated perceptual sensitivity to other types of reliable spec-

tral properties. Watkins (1991) processed preceding acoustic
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contexts using spectral envelope difference (SED) filters,

where the spectrum of one endpoint of the target vowel con-

tinuum was subtracted from the spectrum of the other end-

point (e.g., /I/�/E/). Reliable spectral properties in the

acoustic context had a broadband and more complex shape

than those tested by Ladefoged and Broadbent (1957).

Following this filtering, Watkins (1991) reported contrastive

shifts in phoneme boundaries distinguishing /I/ from /E/,

consistent with Ladefoged and Broadbent (1957). Contrast

effects were observed even when precursor and target vowel

differed in spatial location, talker, orientation in time (i.e.,

time-reversed precursor), and in which ear each was pre-

sented. Later investigations revealed modulation of contrast

effects by varying differences between spectral peaks and

valleys in the precursor versus in the vowel target (Watkins

and Makin, 1994, 1996a) and whether sounds after the target

sound were also processed by SED filters (Watkins and

Makin, 1996b). Sjerps and colleagues (2011, 2012, 2013)

and Sjerps and Smiljanic (2013) suggested that perceptual

compensation for reliable SEDs is pre-categorical, independ-

ent of language background, independent of attention, and

similarly evident in severely acoustically perturbed speech.

Spectral contrast effects are not restricted to speech

sounds. Rather than using speech as a preceding acoustic

context, Holt and colleagues (2005, 2006; Huang and Holt,

2012; Laing et al., 2012) presented a sequence of short-

duration sine tones (“tone history”). Tone histories were

spectrally impoverished compared to speech, but they still

possessed long-term average spectra sufficient to produce

contrast effects in identification of speech targets. Stilp and

colleagues (2010) extended this approach to perception of

musical instruments. They created SED filters from end-

points of a musical instrument continuum varying from

French horn to tenor saxophone. Consistent with speech

studies, they reported contrastive shifts in instrument identi-

fication when the filtered acoustic context was speech or a

string quintet (i.e., preceding context filtered to sound more

like a French horn elicited more “tenor saxophone”

responses and vice versa). Stilp et al. suggested that sam-

pling reliable spectral properties and contrast effects are not

specific to speech but fundamental to perception of all

sounds.

Reliable spectral properties have produced spectral con-

trast effects for a wide range of vowel contrasts, including

/I/-/E/ (Ladefoged and Broadbent, 1957; Broadbent and

Ladefoged, 1960; Sjerps et al., 2011, Sjerps et al., 2013),

/æ/-/A/ (Watkins and Makin, 1996a,b), /o/-/e/ (Mitterer,

2006), /o/-/u/ (Sjerps and Smiljanic, 2013), /ˆ/-/E/ (Huang

and Holt, 2012), and consonant contrasts including /d/-/g/

(Laing et al., 2012) and /s/-/f/ (Watkins and Makin, 1996b).

Comparable effects have been reported for musical instru-

ments varying from French horn to tenor saxophone (Stilp

et al., 2010). While this phenomenon is certainly robust

across these replications and extensions, the diversity of

approaches obscures which aspects of the reliable spectral

properties are essential for producing contrast effects.

Specifically, bandwidths and amplitudes of reliable spectral

properties are two properties that have varied widely across

studies.

SED filters are traditionally calculated across the entire

bandwidth of target vowels, which was originally 5000 Hz

(Watkins, 1991; Watkins and Makin, 1994, 1996a,b).

Subsequent experiments used difference filters spanning

10 000 Hz (Stilp et al., 2010) or as little as 2500 Hz (Sjerps

et al., 2011). Tone histories that sampled frequencies across

a 1000-Hz-wide region also produced contrast effects (Holt,

2005, 2006), as did later studies that spanned only

435–570 Hz (Laing et al., 2012).2 Contrast effects reported

by Ladefoged and Broadbent (1957) were produced by F1

shifts of 180–280 Hz. One might conclude that contrast

effects can be produced by a spectral regularity with band-

width spanning only a few hundred Hertz.

Recent studies of perceptual calibration demonstrate

sensitivity to reliable spectral peaks that are only 100-Hz

wide (Kiefte and Kluender, 2008; Alexander and Kluender,

2010; Stilp and Anderson, 2014). In these studies, the pre-

ceding acoustic context (e.g., sentence) was filtered to

emphasize energy matching F2 in the subsequent target

vowel (which perceptually varied from /u/ to /i/ and acousti-

cally varied in F2 and spectral tilt). This filtering made the

spectral peak reliable (but not constant) across all sounds on

a given trial. Listeners decreased their reliance on this pre-

dictable and thus uninformative property of the acoustic

environment, increasing their reliance on spectral tilt (an

unpredictable and thus informative cue) to identify the target

vowel. Alexander and Kluender (2010) note that perceptual

calibration and spectral contrast both involve attuning to reli-

able spectral properties in the acoustic environment; these

phenomena are distinguished by whether the reliable spectral

property continues through the target sound (calibration; de-

emphasis of spectral similarities) or not (contrast; emphasis

of spectral differences). Both phenomena demonstrate per-

ceptual sensitivity to reliable spectral shapes (calibration to

spectral tilt; contrast to spectral envelope shapes). Finally,

contrast effects have been reported when fundamental fre-

quency of the preceding speech context varied across a range

of 55–103 Hz (Johnson, 1990; Huang and Holt, 2009). These

parallels suggest that spectral contrast effects might be

observed when the preceding acoustic context features a

100-Hz-wide reliable spectral peak.

The relative prominence of a reliable spectral property

can be characterized by filter gain. If the preceding acoustic

context is processed by a high-gain filter to add a large spec-

tral peak, this property will likely affect identification of the

subsequent target sound.3 If the context is processed by a

low-gain filter that minimally amplifies a given frequency

region, this spectral property might not affect target sound

identification at all. The same holds true for broadband spec-

tral regularities imposed upon the acoustic context, such as

those introduced by SED filters. Large filter gains (large

amplification and attenuation in the filter response) will dra-

matically reshape the context spectrum, increasing the likeli-

hood of altering identification of the target sound, but small

filter gains (minimal amplification and attenuation) will

affect target identification minimally if at all.

To establish perceptual phenomena, it is common prac-

tice to use robust manipulations that maximize the likelihood

of observing the predicted effect. Investigations of spectral
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contrast effects generally employed high-gain filters, but

specific gains have varied widely. Watkins and Makin uti-

lized SED filters with peak gain often þ15 dB or more, in

some cases as much as þ30 dB (Watkins, 1991; Watkins and

Makin, 1994, 1996a,b). Difference filters utilized by Sjerps

and colleagues (2011) and Sjerps and Smiljanic (2013)

exhibited peak gain of þ13 to þ25 dB. (It bears note that,

due to their complex shapes, SED filters can reshape the

acoustic context’s spectrum in perceptually significant ways

at frequencies other than where peak gain is found.) Laing

and colleagues (2012) altered context spectra by 20 dB or

more in key frequency regions. Huang and Holt (2012)

reported contrast effects following contexts that differed by

roughly 5–9 dB in key frequency regions, but spectral differ-

ences persisted across several kHz, obscuring the contribu-

tions of filter gain versus bandwidth. This variability

obscures how prominent a spectral regularity must be in

order to alter perception of subsequent speech sounds.

The present experiments explore spectral contrast

effects in vowel identification resulting from a wide range of

reliable spectral properties in the preceding acoustic context.

Filter type is manipulated to compare contrast effects follow-

ing narrow spectral peaks (100 Hz bandwidth, as in studies

of perceptual calibration), broad spectral peaks (300 Hz

bandwidth, comparable to frequency shifts by Ladefoged

and Broadbent, 1957), and SED filters (Watkins, 1991).

Filter gain is manipulated to investigate perceptual sensitiv-

ity to modest but still reliable spectral properties [þ5 to

þ20 dB for narrowband (NB) and broadband (BB) spectral

peaks; 25% to 100% of total spectral difference in SED fil-

ters]. Analyses move beyond evaluating the mere presence

or absence of (statistically significant) contrast effects by

examining perceptual sensitivity to the wide range of spec-

tral regularities presented. Finally, key filter properties

(bandwidth, peak gain, mean power) are used to predict con-

trast effect magnitudes.

II. EXPERIMENTS

A. METHODS

1. Participants

Fifty-six undergraduates were recruited from the

Department of Psychological and Brain Sciences at the

University of Louisville. All listeners reported being native

English speakers with normal hearing and received course

credit for their participation.

2. Stimuli

a. Precursor. The precursor sentence was “Please say

what this vowel is” spoken by the first author (2174 ms) (see

Fig. 1). It was recorded using a Beyerdynamic M88TG

microphone (Beyerdynamic, Inc., Farmingdale, NY) in a

sound-treated room (Acoustic Systems, Inc., Austin, TX)

onto a personal computer with a RME HDSPe AIO sound

card (Audio AG, Haimhausen, Germany).

b. Vowels. Vowels were a ten-step continuum perceptu-

ally varying from /I/ to /E/. Exemplars of both vowels were

recorded by the first author using the same setup as described

above. From these recordings, the vowel continuum was cre-

ated using the procedure described by Winn and Litovsky

(2015). Formant contours were extracted using Praat

(Boersma and Weenink, 2014) and used to create a ten-step

continuum of formant tracks with F1 and F2 varying across

the entire duration of the vowel, consistent with the natural

acoustics of these vowels in English. Formant center fre-

quencies were based on the original recordings. In the /I/
endpoint, F1 linearly increased from 400 to 430 Hz while F2

linearly decreased from 2000 to 1800 Hz. In the /E/ endpoint,

F1 linearly decreased from 580 to 550 Hz while F2 linearly

decreased from 1800 to 1700 Hz. Intermediate members of

the vowel continuum linearly interpolated between these

formant trajectories and center frequencies.

Formant contours were used as filters to a single voice

source extracted from a /I/ token. The spectrum of this vowel

was estimated using Burg’s linear predictive coding (LPC)

procedure, which was then used to inverse filter the token in

order to yield the residual voice source. This method is com-

monly described as a way to remove formant peaks from a

speech signal, in order to separate the voice “source” from

the vocal tract “filter.” The voice source was filtered by each

member of the ten-step continuum of formant tracks.

Acoustic energy above 2500 Hz in each continuum step was

replaced with corresponding energy high-pass-filtered from

the original /I/ token. That is, frequencies above 2500 Hz

were unaltered throughout the vowel continuum and thus

were neutralized as cues. Final stimuli were 246 ms in dura-

tion with fundamental frequency set to 100 Hz throughout

the vowel.

c. Filters. 1. NB spectral peak. NB bandpass filters were

modeled after those used in investigations of auditory per-

ceptual calibration (Alexander and Kluender, 2010; Stilp and

Anderson, 2014). Filter center frequencies were set below F1

in the /I/ endpoint and above F1 in the /E/ endpoint to avoid

FIG. 1. (Color online) Stimulus materials. (a) Spectrogram of precursor sen-

tence “Please say what this vowel is” (2174 ms). (b) LPC spectrum of pre-

cursor sentence. (c) LPC spectra of endpoints of the target vowel series.

Solid line depicts spectrum for /I/, dashed line depicts spectrum for /E/.
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inducing perceptual calibration to spectral peaks that are

present throughout the preceding acoustic context and target

vowel. Center frequencies were 300 Hz (low F1) and 650 Hz

(high F1), with filter bandwidths set to 100 Hz. Filter gains

decreased from þ20 to þ5 dB in 5-dB steps [Figs.

2(a)–2(d)]. Mean power in these filters, as measured by root-

mean-square (rms) amplitude (Hartmann, 1998), was 1.23

(þ20 dB), 0.89 (þ15 dB), 0.57 (þ10 dB), and 0.27 (þ5 dB).

Filters were produced using the fir2 function in MATLAB with

1200 coefficients.

2. BB spectral peak. Rather than resynthesizing the pre-

cursor to emulate different talkers (Ladefoged and

Broadbent, 1957; Laing et al., 2012), low-F1 and high-F1

frequency regions were amplified using bandpass filters.

Bandpass regions of 100–400 Hz (low F1) and 550–850 Hz

(high F1) were amplified, again beyond F1 values in vowel

continuum endpoints as to avoid shared spectral peaks across

the precursor and target sounds. These conditions were la-

beled BB spectral peaks to distinguish them from narrower

spectral peaks (NB). Filter gains decreased from þ20 to

þ5 dB in 5-dB steps [Figs. 2(e)–2(h)]. Mean filter power, as

measured by rms amplitude, was 2.47 (þ20 dB), 1.85

(þ15 dB), 1.23 (þ10 dB), and 0.61 (þ5 dB). Filters were

produced using the fir2 function in MATLAB with 1200

coefficients.

3. SED. SED filters were created following the methods

of Stilp et al. (2010). Spectral envelopes for each vowel end-

point were derived from 1024-point Fourier transforms,

which were smoothed using a 512-point Hamming window

with 512-point overlap. Spectral envelopes of each endpoint

were equated for peak power then subtracted from one

another. A 500-point finite impulse response was obtained

for each SED via inverse Fourier transform. Filter responses

were scaled from 25% to 100% of the total spectral

difference between vowel endpoints, varying in steps of 25%

[Figs. 2(i)–2(l)]. Mean filter power, as measured by rms am-

plitude, was 2.35 (100%), 1.76 (75%), 1.17 (50%), and 0.58

(25%).

3. Procedure

Listeners were divided into four groups, each of which

was tested on three experimental conditions (Group 1:

NB20, BB20, SED100% [n¼ 14]; Group 2: NB15, NB10,

NB5 [n¼ 15]; Group 3: BB15, BB10, BB5 [n¼ 14]; Group

4: SED75%, SED50%, SED25% [n¼ 13]). Group 1 was

tested first to confirm that reliable spectral properties pro-

duced clear spectral contrast effects. Once contrast effects

were established, Groups 2–4 were tested in parametric var-

iations on a single reliable spectral property. No one partici-

pated in multiple groups.

Precursors and vowel targets were low-pass filtered

at 5 kHz, equated in rms-amplitude, and concatenated

separated by a 50-ms inter-stimulus interval. Files were

up-sampled to 44 100 Hz and presented diotically at 70 dB

sound pressure level via circumaural headphones

(Beyerdynamic DT-150, Beyerdynamic, Inc., Farmingdale,

NY). Listeners participated individually in the same single-

wall sound-isolating booths used for stimulus recording.

Following acquisition of informed consent, listeners were

given instructions and told to respond whether the target

vowel sounded more like “ih (as in ‘bit’)” or “eh (as in

‘bet’)” on every trial. Experimental conditions were blocked

and tested in random order. Each block consisted of 200 tri-

als (10 target vowels� 2 filter conditions [low-F1 emphasis,

high-F1 emphasis]� 10 repetitions). Each block lasted

approximately 12 min, between which listeners took short

breaks.

FIG. 2. (Color online) Results organ-

ized by filter type [NB spectral peak

¼ (a)–(d), BB spectral peak¼ (e)–(h),

SED¼ (i)–(l)] and filter gain (columns,

arranged in decreasing order). Each

ordinate shows proportion of /e/
responses, and each abscissa shows the

ten-step continuum of vowel targets

(1¼ /I/ endpoint, 10¼ /e/ endpoint).

Circles indicate mean response propor-

tions; solid lines indicate logistic regres-

sion fits to the data. Figure insets depict

filters tested in that condition [ordinates

span 0 toþ 20 dB filter gain in (a)–(h),

ordinates span �20 to þ20 dB in

(i)–(l); all abscissae span 0–2.5 kHz].

Coloration is consistent across filter

responses and behavioral data (i.e.,

responses to precursors processed by

that filter). Error bars represent standard

error of the mean.
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4. Analysis

Responses were first analyzed on an individual listener ba-

sis to identify outliers. For every experimental condition, each

listener’s responses were analyzed using a generalized linear

model in R (R Core Team, 2014). The binomial family call

function was used to reflect responses being coded in a binary

fashion (0 for “ih” response, 1 for “eh” response). The model

had fixed effects of vowel (continuum step) as a continuous

numerical factor (1–10), filter frequency (low-F1 emphasis,

high-F1 emphasis) as a categorical factor, and the interaction

between these two factors (denoted by the colon below):

Response � Vowelþ Filter Frequency

þ Vowel : Filter Frequency:

Model coefficients were used to calculate the midpoints of

each psychometric function (i.e., vowel identifications fol-

lowing the low-F1-filtered precursor or the high-F1-filtered

precursor). If a function midpoint fell outside the range of

target vowels presented due to ill-formed functions and/or

inability to reliably distinguish vowel continuum endpoints,

results were deemed an outlier. In this case, all results for

that listener in that condition were removed from further

analyses. This occurred in 10 out of 168 data sets (n¼ 2 in

NB20; n¼ 2 in NB15; n¼ 1 in BB20; n¼ 2 in BB15; n¼ 1

in BB5; n¼ 1 in SED100%; n¼ 1 in SED75%).

Group results were sorted by filter type (NB, BB, SED)

and analyzed using generalized linear mixed-effects models

(Bates et al., 2012). Model architectures were hypothesis-

driven in order to include factors and interactions known to

influence speech perception in similarly-designed experi-

ments. Fixed effects included vowel continuum step (coded as

a continuous numerical factor, 1–10), filter frequency (low-F1

or high-F1 emphasis; coded as a categorical factor), filter gain

(peak amplitude in dB or SED in percent; coded as a continu-

ous factor), and the interaction between filter frequency and

gain. A random intercept effect of participant was included in

the model, listed as (1 j Participant) below, and random

slopes were included for each fixed effect and interaction

(Barr et al., 2013), listed as ({factor} j Participant) below.

Random-effects structure allows estimation of variance attrib-

utable to the participant sample to be partitioned from the

estimate of variance attributable to the fixed effects, thus pro-

viding a cleaner estimation of the effects of interest (n.b.,

“random” in this sense implies that the participant pool was

randomly sampled from a larger population, to which these

results are intended to be generalized). The final model had

the following form:

Response�VowelþFilterFrequencyþFilterGain

þFilterFrequency : FilterGain

þð1þVowel þFilterFrequency

þFilterGain

þFilterFrequency : FilterGain jParticipantÞ:

B. Results

Behavioral results are presented in Fig. 2, and statistical

model results are listed in Tables I–III. Table I lists model

results for experiments with NB filters, Table II lists model

results for experiments with BB filters, and Table III lists

model results for experiments with SED filters. Intercept

terms refer to the log odds of perceiving /E/ at any fixed level

of the other factors (starting at an extreme /I/ in the default

model). Slope terms correspond to the change in log odds of

the listener’s response attributable to a change in one stimu-

lus step along the vowel continuum. Filter frequency shift

terms indicate changes in psychometric function intercepts

for low-F1 versus high-F1 filters. Filter gain terms indicate

changes in the intercept of the high-F1-filtered psychometric

TABLE I. Mixed-effects model results for NB experiments. “Vowel contin-

uum step” refers to the slope of the psychometric function, defined as the

change in log odds of the listener’s response resulting from a change of one

step in the vowel continuum. “Filter frequency shift” lists the change in log

odds of the listener’s response resulting from changing the reliable spectral

peak in the preceding sentence from high F1 (600–700 Hz) to low F1

(250–350 Hz). “Filter gain (in dB)” lists the change in log odds of the listen-

er’s response resulting from increasing peak filter gain by 1 dB. “Filter gain

(in dB): filter frequency shift” indicates the change in the size of the filter

frequency shift effect (i.e., contrast effect) per dB of filter gain.

NB Model Term Estimate SE z p

Intercept �3.787 0.190 �19.93 <0.01

Vowel continuum step 0.758 0.014 56.16 <0.01

Filter frequency shift �0.026 0.135 �0.19 0.85

Filter gain (in dB) �0.028 0.013 �2.22 0.03

Filter gain (in dB): filter frequency shift 0.034 0.011 3.22 <0.01

TABLE II. Mixed-effects model results for BB experiments. “Filter fre-

quency shift” lists the change in log odds of the listener’s response resulting

from changing the reliable spectral peak in the preceding sentence from

high F1 (550–850 Hz) to low F1 (100–400 Hz). All other items have the

same description as in Table I.

BB Model Term Estimate SE z p

Intercept �4.334 0.315 �13.73 <0.01

Vowel continuum step 0.695 0.013 53.47 <0.01

Filter frequency 0.385 0.175 2.21 0.03

Filter gain (in dB) 0.005 0.018 0.27 0.79

Filter gain (in dB): filter frequency shift 0.044 0.014 3.15 <0.01

TABLE III. Mixed-effects model results for SED experiments. “Filter fre-

quency shift” lists the change in log odds of the listener’s response resulting

from changing the SED filter from /E/ � /I/ (higher F1 peak) to /I/ � /E/

(lower F1 peak). “Filter gain (in % of total SED)” lists the estimated change

in log odds of the listener’s response resulting from increasing the SED

tested by 1%. “Filter gain (in % of total SED): filter frequency shift” indi-

cates the change in the size of the filter frequency shift effect (i.e., contrast

effect) per percent of total SED tested.

SED Model Term Estimate SE z p

Intercept �4.800 0.211 �22.78 <0.01

Vowel continuum step 0.836 0.016 53.65 <0.01

Filter frequency shift 0.183 0.171 1.07 0.28

Filter gain (in % of total SED) 0.003 0.002 1.30 0.19

Filter gain (in % of total SED):

filter frequency shift

0.006 0.002 2.48 0.01
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function for each 1-dB (NB, BB) or 1% (SED) increase in

filter gain. Of central importance is the filter gain by filter

frequency shift interaction, which conveys changes in con-

trast effect magnitudes at different amounts of filter gain.

This interaction was statistically significant in each model

and is evident in the regression fits to behavioral data in Fig.

2; listeners exhibited progressively smaller contrast effects

with lower amounts of filter gain. This is an important depar-

ture from previous considerations of contrast effects as being

dichotomous in nature (present/absent, or statistically signifi-

cant/failing to achieve statistical significance).

While model coefficients in Tables I–III can be used to

estimate contrast effect magnitudes for specific conditions,

they cannot indicate which contrast effects significantly dif-

fered from zero or from each other. For post hoc analyses,

models were reanalyzed with filter gain coded as a categori-

cal factor. Categorical coding selects one level of filter gain

as the baseline condition, then uses Wald z-tests to test its

model coefficient against 0 (i.e., whether the contrast effect

in that condition significantly differed from 0) and against

other levels of filter gain (i.e., pairwise comparisons). By

rotating through each level of filter gain as the baseline con-

dition, each level is tested against 0 and against every other

level.

Table IV lists model coefficient estimates and contrast

effect magnitudes for each of the 12 conditions. Contrast

effect magnitudes are operationalized as the distance

between psychometric function 50% points measured in

stimulus steps along the vowel continuum. Fifty-percent

thresholds were derived from the inverse logit function.4

Tests of statistical significance used one-tailed Wald z-tests,

as directionality was predicted a priori (contrast effects

being significantly greater than 0, or larger contrast effects

for greater amounts of filter gain as indicated by the signifi-

cant interactions in Tables I–III). Contrast effects were

statistically significant (i.e., greater than 0) in 11 of 12 exper-

imental conditions; only NB5 filters failed to significantly

shift listeners’ responses.

Pairwise comparisons revealed the following results: for

NB filters, NB5 produced smaller contrast effects than all

larger filter gains (z> 2.13, p< 0.025), which did not signifi-

cantly differ from each other (z< 1.46, p> 0.05). For BB fil-

ters, BB5 produced smaller contrast effects than BB20

(z¼ 2.87, p< 0.01), and effects grew larger across BB5,

BB10, and BB15, which all differed from each other

(z> 1.95, p< 0.05). For SED filters, SED100% (z> 1.96,

p< 0.05) and SED75% (z> 1.96, p< 0.05) each produced

larger contrast effects than SED50% and SED25%, but the

two larger filter gains did not differ from each other

(z¼ 0.02, p> 0.05) nor did the two smaller filter gains differ

from each other (z¼ 0.17, p> 0.05). Contrast effects were

slightly larger for NB15 than NB20 and for BB15 than

BB20, and were comparable across SED75% and SD100%.

This lack of clear monotonicity may be attributable to testing

different groups of listeners across these “neighboring”

conditions.

Behavioral results (Fig. 2) and significant interactions

between filter gain (coded as a continuous variable) and filter

frequency (Tables I–III) suggest that contrast effect magni-

tude varied linearly across different levels of filter gain.

Pearson correlation analyses were used to assess how well

different filter properties predicted contrast effect magni-

tudes. Filter bandwidth was a poor predictor [r¼�0.19,

p> 0.05; Fig. 3(a)] likely because of its restriction to only

three possible values (100 Hz for NB, 300 Hz for BB,

2500 Hz for SED. Peak filter gain was positively correlated

with contrast effect magnitude [r¼ 0.61, p< 0.05; Fig.

3(b)], suggesting that more prominent spectral regularities

elicited larger contrast effects. However, this predictor is

limited by its ignorance of filter type and bandwidth.

Contrast effects in BB conditions are markedly larger than

those in NB conditions, but these results share peak filter

gain. Mean filter power was the best predictor of contrast

effect magnitude [r¼ 0.74, p< 0.01; Fig. 3(c)]. Peak filter

gain and mean filter power are clearly not independent of

each other (r¼ 0.63, p< 0.05). However, when filter proper-

ties were entered into a multiple regression predicting con-

trast effect magnitude, mean filter power was a significant

predictor (t¼ 3.39, p< 0.01) while peak gain (t¼�1.02,

p> 0.05) and bandwidth were not (t¼�2.22, p> 0.05), con-

firming mean filter power as the best predictor of contrast

effect magnitude.

III. GENERAL DISCUSSION

Speech perception was systematically altered when the

preceding sentence featured reliable spectral properties in

the form of either a narrowband spectral peak, broadband

spectral peak, or a complex spectral envelope reflecting dif-

ferences between spectra of target vowel continuum end-

points (SED). Contrast effects were observed in nearly every

condition tested, including when the precursor was proc-

essed by filters that spanned only 100 Hz in bandwidth, were

only þ5 dB, or reflected only one-quarter of the difference

TABLE IV. Model coefficients and contrast effect magnitudes for all filter

types and filter gains. Mixed effects models were analyzed with filter gain

coded categorically and each given level of filter gain set as the default

level. This produces a Wald z-test of that model coefficient against zero,

which tests contrast effect magnitude (the number of stimulus steps separat-

ing 50% points on psychometric functions) against zero. **p< 0.01,
***p< 0.001.

Filter Model Estimate Contrast Effect

NB20 0.55 0.72***

NB15 0.61 0.81***

NB10 0.39 0.51***

NB5 0.07 0.09

BB20 1.07 1.54***

BB15 1.26 1.80***

BB10 0.87 1.24***

BB5 0.54 0.78***

SED100% 0.80 0.94***

SED75% 0.79 0.93***

SED50% 0.37 0.43**

SED25% 0.40 0.47**
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between target vowel spectra. Reliable spectral properties

need not be particularly prominent in order for the auditory

system to extract and exploit them. Given this acute sensitiv-

ity, contrast effects may be more pervasive in speech percep-

tion than previously thought.

Acute sensitivity to spectral contrast relates to percep-

tion of speech amidst spectrally reflective surfaces such as

walls in rooms, where amplification of resonant frequencies

can create reliable spectral peaks. This also impacts speech

perception over media with transfer functions that add even

small spectral peaks to the signal, such as headphones, mo-

bile phones, and loudspeakers. Altering speaking style can

also add reliable spectral peaks to speech (Ladefoged, 1989).

In all of these situations, it is important that the auditory sys-

tem avoid mistaking predictable properties of the environ-

ment or communication medium as speech information.

Accordingly, listeners are sensitive to deviations from reli-

able spectral features, both prominent and subtle.

Results extend a long history of spectral contrast effects

in speech perception (see Sec. I). Across these studies, con-

trast effects have been operationalized by changes in

response rates, error rates, phoneme boundary shifts, per-

ceived changes in target frequency (e.g., 40 Hz change in F1,

10 Hz change in fundamental frequency, etc.), or in cases of

complex stimulus series, the number of stimulus steps sepa-

rating response functions (Table IV). While such quantifica-

tion puts contrast effect magnitudes in context, they have

historically been treated as dichotomous: present (statisti-

cally significant differences in performance) or absent (dif-

ferences in performance being absent or falling below the

threshold of statistical significance). Two exceptions are

those of Holt (2006), who reported larger contrast effects

when the preceding acoustic context was comprised of lon-

ger tone sequences, and Holt and Lotto (2002), where con-

trast effect magnitudes decreased as silent inter-stimulus

interval between context and target stimuli increased.

These exceptions notwithstanding, no efforts attempted to

predict contrast effect magnitude, addressing whether this

perceptual response is dichotomous or continuous in nature.

Here, contrast effects are revealed to be continuous, with

magnitudes strongly correlated with total power of the

reliable spectral property (i.e., mean filter power). This is an

important discovery for understanding the occurrence of this

phenomenon and the precise extent of its influence on

perception.

Contrast effect magnitude corresponded poorly to band-

width of the reliable spectral property, corresponded well to

peak filter gain, but was best predicted by mean filter power

(Fig. 3). This is certainly not an exhaustive list of properties

of spectral regularities that influence speech sound identifi-

cation. Duration of the preceding acoustic context, held con-

stant in the present experiments, systematically influences

speech perception. Holt (2006) reported larger contrast

effects when longer-duration tone histories were presented.

Alexander and Kluender (2010) reported modestly greater

perceptual calibration to reliable spectral tilt in longer-

duration precursors. They then revealed that it was not pre-

cursor duration per se that increased perceptual calibration,

but opportunities to sample the precursor spectrum.

Calibration to spectral tilt increased when precursor duration

was held constant and rate of spectro-temporal modulations

in their nonspeech precursors increased.5 The present results

are broadly consistent with these findings, as increasing the

opportunities to sample the reliable spectral property

(increasing its prominence vis-�a-vis increased filter power)

resulted in larger contrast effects. Further research is needed

to understand what other characteristics of reliable spectral

properties modulate perceptual responses.

Contrast effects following SED filters are qualitatively

different than those following NB or BB filters. Despite

mean filter power being well matched to that of BB filters,

SED contrast effects are more modest and grow more slowly

with increasing filter power [Fig. 3(c)]. Indeed, the correla-

tion between mean filter power and contrast effect magni-

tude increases substantially when analyzing only NB and BB

results (r¼ 0.88, p< 0.005). Two points might explain this

discrepancy. First, increases in SED filter power are distrib-

uted along a wide frequency range which includes frequency

regions that are less important for distinguishing /I/ from /E/

[Figs. 2(i)–2(l)]. This is contrary to NB and BB conditions,

where increases in filter power occur only in narrow fre-

quency regions that are sufficient for producing contrast

effects [Figs. 2(a)–2(h)]. This might explain why contrast

effect magnitude in the SED100% condition (where peak fil-

ter gain in F1 regions only reaches þ12.5 dB) is more com-

parable to those in BB10 and NB15 conditions than in BB20

FIG. 3. (Color online) Scatterplots comparing contrast effect magnitudes (quantified as the number of stimulus steps separating 50% points on psychometric

functions) to filter properties. Circles indicate contrast effect magnitudes in NB spectral peak conditions, squares for BB spectral peak conditions, triangles for

SED conditions. (a) Contrast effect magnitude was not correlated with filter bandwidth (r¼�0.19, p> 0.05), which was restricted to 100 (NB), 300 (BB), or

2500 Hz (SED). (b) Effects were positively correlated with peak filter gain, indicating larger contrast effects following higher-gain filters (r¼ 0.61, p< 0.05).

(c) Mean filter power was the best predictor of contrast effect magnitude, indicating that filters with larger average power produced larger contrast effects

(r¼ 0.74, p< 0.01).
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and NB20 conditions [Fig. 3(b)]. Second, contrast effect

magnitude may differ according to different methods of cre-

ating vowel continua. Watkins and colleagues (1991) and

Watkins and Makin (1994, 1996a,b) interpolated between

spectral envelopes of vowel endpoints to create their target

vowel continuum, producing ambiguous mid-continuum

stimuli with modest spectral peaks. Here, mid-continuum

stimuli had clear formant peaks at frequencies intermediate

to the canonical endpoints. Vowel identification might be

more susceptible to SED filtering for ambiguous stimuli with

modest formant peaks (a la Watkins) rather than clear peaks

(as tested here).

SED50% filters produced smaller contrast effects than

SED100% filters (z¼�2.13, p< 0.05). This replicates the

results of Watkins and Makin (1996a), who reported smaller

phonemic boundary shifts when carrier contrast ratio (differ-

ence between spectral envelopes used in the difference filter)

was half that of target vowel contrast ratio. Watkins and

Makin concluded that compensation for spectral envelope

distortion does not involve extraction of contrast-invariant

spectral “features” such as formant peaks, as formant center

frequencies did not change across different contrast ratios.

Given the significant correlation between mean filter power

and contrast effect magnitude, the auditory system does

appear to be extracting some spectral feature(s) from the

acoustic context, even if they are broadly defined. These fea-

tures are clearly not contrast-invariant, as decreasing mean

filter power resulted in smaller contrast effects. This pattern

was observed for all regularities tested (NB, BB, SED), sug-

gesting a broadly tuned process for extracting and exploiting

reliable spectral properties in a listening context.

Given that target stimuli were vowels, one might situate

the present results within theories of vowel normalization.

Vowel normalization is traditionally viewed as relying on

intrinsic (i.e., specified within the target vowel or syllable,

such as fundamental and/or formant frequencies) and extrin-

sic factors (i.e., external to the target vowel or syllable, such

as spectral properties of preceding sounds or the vowel sys-

tem of a given talker). Both approaches contribute to vowel

normalization, but extrinsic effects appear to influence vowel

perception more than intrinsic effects (Ainsworth, 1975;

Nearey, 1989). Intrinsic and extrinsic information play either

direct roles in vowel normalization (information is used

directly in perceptual representation of the vowel) or indirect

roles (to establish a frame of reference against which other

vowels are compared; see Johnson, 1990 for discussion).

Reliable spectral properties in the preceding sentence may

be viewed as extrinsic direct information for vowel normal-

ization, much in the same way that Johnson (1990) classified

the seminal findings of Ladefoged and Broadbent (1957).

However, it might be inappropriate to label these effects

as extrinsic direct vowel normalization or perhaps vowel

normalization at all. Consider the classic findings by

Ladefoged and Broadbent (1957): when frequencies appro-

priate for F1 were shifted downward in the precursor sen-

tence (making it sound more /I/-like), participants reported

more /E/ percepts in the target word, and vice versa. This

effect has been reproduced by shifting key frequency ranges

(Ladefoged and Broadbent, 1957; Laing et al., 2012),

altering speaking style (Ladefoged, 1989), and by changing

talkers (Dechovitz, 1977). In BB conditions, contrast effects

were observed through simple amplification of key fre-

quency regions without any explicit consideration of the

talker’s formant frequencies. Remez et al. (1987) replicated

this effect when materials were sinewave replicas of speech,

leading them to question whether they falsified Ladefoged

and Broadbent (1957) rather than replicated them since their

results could not be attributed to talker information that is

normally available in speech production. Recently, Laing

and colleagues (2012) replicated this effect when the acous-

tic context consisted of simple tone histories (see also Holt,

2005, 2006; Huang and Holt, 2012), which contained no

vocal tract characteristics to which listeners could normalize.

This effect is not specific to vowel perception, also being

observed in identification of stop consonants and fricatives

(Watkins and Makin, 1996b; Laing et al., 2012). This effect

is not even specific to speech perception, also being observed

for identification of musical instruments (Stilp et al., 2010).

Consistent patterns of results are observed due to reliable

spectral properties in the precursor sounds, whether they are

speech or nonspeech, and whether target sounds are speech

or nonspeech.

In similar experiments, Laing et al. (2012) proposed that

the auditory system normalizes to stable signal properties

(e.g., long-term average spectrum) rather than talker charac-

teristics such as vocal tracts. This rekindles the question of

how much of talker-specific or environment-specific adapta-

tion can be explained by low-level phenomena, and whether

those effects require higher-level processes such as talker

identification or perception of physical gestures. Talker in-

formation is not necessary to produce spectral contrast

effects in phoneme identification (see contrast effects fol-

lowing nonspeech precursors in Watkins, 1991; Holt, 2005,

2006; Sjerps et al., 2011; Huang and Holt, 2012; Laing

et al., 2012). Yet, many experimental paradigms (including

the present one) are designed to reveal spectral contrast

effects that arise from low-level signal properties but are not
designed to assess higher-level influences on performance ei-

ther within or across trials. Speech perception is influenced

by a wide variety of top-down factors, including talker fa-

miliarity (Creelman, 1957; Mullenix et al., 1989; Nygaard

and Pisoni, 1998), lexicality (Ganong, 1980; Samuel, 2001;

Norris et al., 2003), and expectations of talker acoustics

(Johnson et al., 1999; Sohoglu et al., 2012), the last of which

can be moderated by hearing impairment (Winn et al.,
2013). None of these effects can be explained by low-level

auditory processes alone, and few studies are designed to

test both low- and high-level processes concurrently.

Bottom-up and top-down influences on speech perception

are more likely interactive than they are exclusive

(McClelland et al., 2006). It is possible (or perhaps likely)

that the effects identified in the current study supplement

and interact with those that occur in the process of identify-

ing talkers, predicting words, and relying on linguistic expe-

rience (e.g., Elman and McClelland, 1998).

Sensory systems capture reliable aspects of the sensory

environment in order to be optimally sensitive to changing,

more informative inputs. On short timescales, neural
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adaptation maximizes information transmission for the orga-

nism, indicating predictability in the environment while con-

serving neural resources for when inputs change and convey

new information (Wainwright, 1999; Clifford et al., 2007;

Kohn, 2007). On longer timescales, neural response proper-

ties evolve to capture stable statistical structure in the envi-

ronment. This approach has been highly fruitful for

understanding vision (see Schwartz and Simoncelli, 2001;

Simoncelli, 2003; Geisler, 2008 for reviews), and recent

research shows congruence between statistical regularities in

natural sounds and auditory processing and/or perception.

Perception of sound textures is mediated by their time-

averaged statistical properties (McDermott et al., 2013).

Amplitude modulations in natural sounds such as speech and

music follow a 1/f distribution (Voss and Clarke, 1975), and

neural sensitivity to this distribution increases along the

ascending auditory pathway (Garcia-Lazaro et al., 2011).

The statistical structure of the acoustics of human speech is

well captured by response properties at the mammalian audi-

tory nerve (Lewicki, 2002; Stilp and Assgari, 2015), and this

congruence appears to continue when comparing the statis-

tics of speech sound classes to response properties in the

cochlear nucleus (Stilp and Lewicki, 2014). Means and var-

iances of stimulus distributions are captured by response

properties of auditory midbrain neurons, shifting to capture

changes in these distributional properties (Dean et al., 2005).

Finally, diminished neural responses to repeated sounds and

enhanced responses to unexpected sounds have been thor-

oughly documented in stimulus-specific adaptation (SSA;

Ulanovsky et al., 2003). SSA occurs throughout the central

auditory system (Ulanovsky et al., 2003; P�erez-Gonz�alez

et al., 2005; Anderson et al., 2009; Malmierca et al., 2009)

and is of particular relevance to the present results, as Holt

(2006) suggested SSA may underlie the types of effects

observed here (but see Kingston et al., 2014). Precursors

conveyed a reliable property in their long-term average spec-

tra (spectral peak or global spectral shape). The auditory sys-

tem extracted this stable property, maintaining maximal

sensitivity for when this property changed, as it did upon

introduction of the vowel target. This difference (akin to

“deviant” trials in SSA experiments) was perceptually mag-

nified, resulting in contrast effects. The above examples and

present experiments operate on varying timescales but share

a common process: identifying and exploiting stable proper-

ties of the acoustic environment.

The present results reveal remarkable perceptual sensi-

tivity to reliable spectral properties in a listening context.

This process has had many names in the literature: normal-

ization (Dechovitz, 1977; Remez et al., 1987; Johnson,

1990; Mitterer, 2006; Huang and Holt, 2009, 2012; Laing

et al., 2012; Sjerps et al., 2011; Sjerps et al., 2012, 2013),

calibration (Kiefte and Kluender, 2008; Alexander and

Kluender, 2010; Stilp and Anderson, 2014), compensation

(Watkins, 1991; Watkins and Makin, 1994, 1996a,b; Sjerps

et al., 2011; Sjerps and Smiljanic, 2013), perceptual con-

stancy (Ladefoged and Broadbent, 1957; Holt, 2006; Stilp

et al., 2010), adaptive coding (Huang and Holt, 2012), and

inverse filtering (Watkins, 1991; Watkins and Makin, 1994,

1996a,b). Except for the case of perceptual calibration where

reliable spectral properties are shared across context and

target, all other monikers describe the same phenomenon:

differences between reliable spectral properties in the pre-

ceding acoustic context and the spectrum of the subsequent

target sound are perceptually enhanced, resulting in contrast

effects. This phenomenon has been observed using a wide

range of materials, and in the present studies, for a wide

range of spectral regularities, including spectral prominences

as narrow as 100 Hz or as modest as þ5 dB. Emergence of

contrast effects in the presence of such subtle spectral regu-

larities suggests that such effects are likely to occur in a

wide variety of listening situations, and therefore might

influence speech perception more frequently than previously

considered.
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1Throughout this paper, spectral contrast effects refer to those following a

reliable spectral property in the preceding acoustic context. This is distinct

from similarly-named effects that occur only between the offset of a pre-

ceding sound and onset of the target sound (e.g., Lotto and Kluender,

1998). As no reliable spectral property is present in those studies, that

class of contrast effects is not discussed further. The present effects are

also distinct from investigations of perceptual sensitivity to level differen-

ces between spectral peaks and valleys, which are also termed spectral

contrast (e.g., Leek et al., 1987; Baer et al., 1993). Formally speaking,

Watkins and Makin (1996a) examined the influence of spectral contrast

(peak-to-valley differences) on spectral contrast effects (phonemic bound-

ary shifts), but we resist using this description to avoid confusion.
2Experiment 1 of Holt (2006) manipulated the variability of frequencies

sampled in tone histories, concurrently varying total bandwidth of the tone

history. Comparable contrast effects were reported when tone histories

spanned 1000, 300, 100, or 1 Hz (repetition of one frequency). However,

as frequency variability/bandwidth decreased, density of sampling that fre-

quency region increased dramatically. Acoustic energy in any narrow fre-

quency region of speech waxes and wanes across time, and is not

consistent for such extended periods (2100 ms) as in these tone histories.

Results obtained using narrowband tone histories make a poor comparison

to those using speech precursors given the discrepancy in constant versus

intermittent evidence for acoustic energy in a certain frequency region.
3Here and throughout, frequency specificity of filters is assumed. If the pre-

ceding acoustic context contains reliable spectral peaks that are not con-
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contrast effects will not be observed (Laing et al., 2012).
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and �(InterceptþFilter frequency shift)/Slope for the low-F1-filtered psy-

chometric function.
5Alexander and Kluender (2010) reported unexpectedly diminished calibra-

tion to a reliable spectral peak common to vowel target and longer-

duration preceding acoustic context. They attributed this result to acute

sensitivity to acoustic onsets and repetition of acoustic information

throughout the trial. Additional research is needed to understand poten-

tially different roles of context duration when narrowband spectral similar-

ities are being de-emphasized (calibration) versus when narrowband

spectral differences are being emphasized (contrast).
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